

HACK THE WIND 2018 WINNER TEAM

CHALLENGE 2 - HAMBURG HARBOR MICROGRID

TEAM: POWER2U SWEDEN

PRESENTER: XUE WANG

Market creator, InnoEnergy Scandinavia

The initial LSO concept has been detailed and narrowed down to Power 2U – the flexibility operator

Understanding the customer journey

Clarified strategic direction

How to monetize this?

Power 2U – The flexibility operator

A double-sided business model

Power 2U unlocks, aggregates and delivers flexibility

Hack the Wind 2018 case: Hamburg Harbour Microgrid

The Goal

- Hamburg Harbour Microgrid is a decentralised energy system enabled by Power2U
- Secure the energy supply to the consumer
- Ensure the stability of the grid
- Maximise the self-sufficiency of the Microgrid
- We believe that with the help of Smart Contract, different types of customers will be empowered to trade energy services via a reliable, traceable and sustainable system

Smart Ledgers — How?

Requirement: Industrial consumer is the energy buyer to fulfil the consumption profile

- Read el. price (euro/kW.h) from SPOT Market
- Publish the following 24h consumption prediction (hourly timestep)
- Prioritise the use of wind generation
- When the wind is not sufficient, go for ES first, and the last resort is to buy from the grid (secure the demand)

Requirement: Windfarm is the energy supplier in the microgrid

- Read el. price (euro/kW.h) from SPOT Market
- Publish the following 24h generation prediction (hourly time-step)
- Provide el. generation to the consumer
- Make decisions according to the 'logic flow'

Electric thermal energy storage

Requirement: ETES is the storage service provider of the microgrid

- Read el. price (euro/kW.h) from SPOT Market
- Make decisions according to the 'logic flow'
- Publish the following 24h predicted flexibility profile (hourly time-step)
- Provide discharge/charge flexibility to the industrial consumer or the windfarm

Requirement: Grid provides connection between the main EPS and the microgrid

- Read el. price (euro/kW.h) from SPOT Market
- Publish the signal of System Balance
 Deviation (on/off)
- When there's no sufficient energy supply inside the microgrid, provide el. to the industrial consumer
- When there's residual from the windfarm, take the 'feed-in' if its stability is ensured

Algorithm Logic Flowchart — How?

Simulation Result

Sample schedule based on (given data 26 October 2017), representing the schedule for 27 September 2018

Peer-to-Peer Energy Trading Platform with an integration of Conditional Grid Ancillary Service

Choose application accounts

Industrial Consumer

- Factory COO

- Security of energy supply
- Maximise the use of wind production
- Take the price index into consideration

Windfarm

- The generation is consumed by the consumer(s)
- Reduce the impact of volatile generation profile

ETES (electro-thermal energy storage)

- Asset manager

Supply storage as a service to absorb local generation surplus and inject to the consumer at certain times

Arbitrage via the flexibility of energy storage system

Grid

- TSO coordinator

- Supply the microgrid consumption when local productions are not sufficient
- Allow feed-in when there's residual from the microgrid
- Maintain the grid stability

Representation of assets on the map

Example of energy trades records, with stakeholder view

After log-in, Transaction records in the application accounts

